Distribución de Probabilidades - Distribuciones discretas: Bernouilli
Distribuciones discretas y continuas
Las distribuciones discretas son aquellas en las que la variable puede pude tomar un número determinado de valores:
Ejemplo: si se lanza una moneda al aire puede salir cara o cruz; si se tira un dado puede salir un número de 1 al 6; en una ruleta el número puede tomar un valor del 1 al 32.
Las distribuciones continuas son aquellas que presentan un número infinito de posibles soluciones:
Ejemplo: El peso medio de los alumnos de una clase puede tomar infinitos valores dentro de cierto intervalo (42,37 kg, 42,3764 kg, 42,376541kg, etc); la esperanza media de vida de una población (72,5 años, 72,513 años, 72,51234 años).
Vamos a comenzar por estudiar las principales distribuciones discretas.
Distribuciones discretas: Bernouilli
Es aquel modelo que sigue un experimento que se realiza una sola vez y que puede tener dos soluciones: acierto o fracaso:
Cuando es acierto la variable toma el valor 1
Cuando es fracaso la variable toma el valor 0
Ejemplo: Probabilidad de salir cara al lanzar una moneda al aire (sale cara o no sale); probabilidad de ser admitido en una universidad (o te admiten o no te admiten); probabilidad de acertar una quiniela (o aciertas o no aciertas)
Al haber únicamente dos soluciones se trata de sucesos complementarios:
A la probabilidad de éxito se le denomina "p"
A la probabilidad de fracaso se le denomina "q"
Verificándose que:
p + q = 1
Veamos los ejemplos anteriores :
Ejemplo 1: Probabilidad de salir cara al lanzar una moneda al aire:
Probabilidad de que salga cara: p = 0,5
Probabilidad de que no salga cara: q = 0,5
p + q = 0,5 + 0,5 = 1
Ejemplo 2: Probabilidad de ser admitido en la universidad:
Probabilidad de ser admitido: p = 0,25
Probabilidad de no ser admitido: q = 0,75
p + q = 0,25 + 0,75 = 1
Ejemplo 3: Probabilidad de acertar una quiniela:
Probabilidad de acertar: p = 0,00001
Probabilidad de no acertar: q = 0,99999
p + q = 0,00001 + 0,99999 = 1