Plano Inclinado. Longitud del plano inclinado y el ángulo

De este modo de resolver los problemas del plano inclinado pasamos al siguiente.

Partimos de este simple dibujo:

Plano Inclinado

Para nuestros cálculos hemos de tener en cuenta la altura a la que deseamos subir una resistencia o peso, la longitud del plano inclinado y el ángulo formado por la rampa respecto del suelo.

Si deseas elevar un objeto de 100 kilos de peso a una altura de 70 cm, puedes arrastrarlo tirando de él a lo largo de una rampa de 2,5  metros de longitud, o de 1,8 m o 1,15 m:

longitud del plano inclinado

No hay duda de que cuanto menor longitud tenga el plano me encontraré que he de realizar mayor esfuerzo porque el valor de la pendiente de la rampa aumenta su valor.

Todo esto ya lo hemos estudiado pero ahora interviene el ángulo que forma el plano con el suelo horizontal.

Colocamos un peso en la rampa. Suponemos que no se desliza, no resbala:

         longitud del plano inclinado

 
Hemos de averiguar la fuerza que tenemos que vencer para subir un peso. Sin tener en cuenta el rozamiento (el rozamiento lo estudiaremos más adelante).

Estudiemos lo que sucede con este peso de 100 kilos u otro cualquiera en un plano cuya inclinación sea α:

 

longitud del plano inclinado

El peso situado en el plano ejerce una fuerza-peso que es perpendicular respecto del suelo.

A la fuerza-peso P la consideramos como la resultante de otras dos Px y Py:


longitud del plano inclinado

En la siguiente figura es importante que comprendas que los ángulos α son iguales:

longitud del plano inclinado  (I)

Son iguales porque los lados que comprende cada ángulo son perpendiculares entre sí

longitud del plano inclinado

Los lados con color amarillo de cada triángulo son perpendiculares lo mismo que los lados en color morado de cada uno de ellos.

Tomamos la figura (I):


                    longitud del plano inclinado

                                  
longitud del plano inclinado

 

2.111   En un plano inclinado que forma 20º con la horizontal del suelo se halla un peso de 100 kilos.

¿Cuánto vale la fuerza paralela al plano y la fuerza perpendicular al mismo?

Respuesta: 34,2 y 94 kilos respectivamente

Solución

Primero dibujamos el plano inclinado con los datos que nos dan:

longitud del plano inclinado

Anteriormente hemos deducido los valores de las componentes Px Py:

longitud del plano inclinado

Sustituyendo valores y haciendo operaciones:


longitud del plano inclinado

Nota:

A la componente paralela Px se la representa generalmente por  encima de la línea del plano como puedes observar en la siguiente figura.

longitud del plano inclinado

Semejanza de las fórmulas obtenidas hasta este momento:

Cuando comenzamos a resolver problemas del plano inclinado utilizamos

 

longitud del plano inclinado

Esta expresión nos recuerda a longitud del plano inclinado

Y ¿qué es senα?

Si recuerdas la representación gráfica:

 
longitud del plano inclinado

Vemos que se trata de:

longitud del plano inclinado.

Contenidos que te pueden interesar
Este sitio usa cookies para personalizar el contenido y los anuncios, ofrecer funciones de redes sociales y analizar el tráfico. Ninguna cookie será instalada a menos que se desplace exprésamente más de 400px. Leer nuestra Política de Privacidad y Política de Cookies. Las acepto | No quiero aprender cursos gratis. Sácame