Problemas de Aplicación del Trabajo

Ejemplo. Se empuja un libro 1.20 m sobre una mesa horizontal con una fuerza horizontal de 3.0 N. La fuerza de fricción opuesta es de 0.6 N. a) ¿Qué trabajo efectúa la fuerza de 3.0 N?; b) ¿Y la fricción?;c) ¿Qué trabajo total se efectúa sobre el libro?

Problemas de Aplicación del Trabajo.

 

a) La fuerza de 3 N está en dirección al desplazamiento. Entonces:

W = (3.0 N)*(1.20 m) = 3.6 N.m = 3.6 J

b) La fricción también está dirigida hacia el eje x, pero con sentido contrario:

Wf = (- 0.6 N)*(1.20 m) = - 0.72 J

c) El trabajo total está dado por la componente de la fuerza resultante en dirección al movimiento. Las fuerzas que actúan en dirección al movimiento son la de 3.0 N y la fricción:

∑Fx = 3.0 N + (- 0.6 N) = 2.4 N y

Wt = (2.4 N)*(1.2 m) = 2.88 J.

donde Wt es el trabajo total efectuado. Éste resultado es el mismo si se suman los trabajos individuales de cada fuerza que actúa sobre el cuerpo:

Wt = W + Wf = 3.6 J + (- 0.72 J) = 2.88 J

 

Ejemplo. El baúl de la figura es arrastrado en una distancia horizontal de 24 m por una cuerda que forma un ángulo de 60º con el piso. Si la tensión en la cuerda es de 8 N, ¿Cuál es el trabajo realizado por la cuerda?

Problemas de Aplicación del Trabajo.

La fuerza no está en dirección al desplazamiento, pero tiene una componente paralela a él, que es igual a:

F = (8 N) cos 60º

Y el trabajo es igual a:

W = F*d = ((8 N) cos 60º )*(24 m) = 96 J

Contenidos que te pueden interesar
Este sitio usa cookies para personalizar el contenido y los anuncios, ofrecer funciones de redes sociales y analizar el tráfico. Ninguna cookie será instalada a menos que se desplace exprésamente más de 400px. Leer nuestra Política de Privacidad y Política de Cookies. Las acepto | No quiero aprender cursos gratis. Sácame